

Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

Visible-light photolysis of $[FeCp(\eta^6-toluene)][PF_6]$ as a clean, convenient and general route to iron-vinylidene and iron-acetylide complexes

Cátia Ornelas, Jaime Ruiz, Didier Astruc*

Institut des Sciences Moléculaires, UMR CNRS N° 5255, Université Bordeaux1, 33405 Talence Cedex, France

ARTICLE INFO

Article history: Received 28 August 2008 Received in revised form 29 September 2008 Accepted 30 September 2008 Available online 8 October 2008

This communication is dedicated to our friend Professor Dr. Chris Elschenbroich, an outstanding organometallic chemist, teacher and book author, at the occasion of his retirement.

Keywords: Vinylidene Carbene Acetylide Photolysis Iron Sandwich complex

1. Introduction

In organoiron chemistry [1], the sandwich complexes [FeCp(η^{6} -arene)][PF₆] [2] occupy a large place because of their facile singlestep large-scale synthesis from ferrocene and further iron-induced aromatic transformation [3]. Another application of these sandwich compounds is the visible-light photolysis, a source of the 12-electron fragment CpFe⁺ leading, in CH₂Cl₂, to arene exchange and, in MeCN, to the synthesis of the piano–stool complexes [CpFeL₂(MeCN)][PF₆] [4]. We now find that, if the visible-light photolysis of [FeCp(η^{6} -toluene)][PF₆] using simply a 100-W globe is carried out in CH₂Cl₂ in the presence of dppe and a terminal alkyne, (i) the vinylidene complex [FeCp(dppe)(=C=CHR)][PF₆] is directly formed in high yield ; (ii) this reaction is clean and general, (iii) it is extended to 1,4-bis(ethynyl)benzene and ethynylferrocene; (iv) the mono- and bimetallic iron-vinylidene complexes are deprotonated to the neutral iron-alkynyl complexes.

Vinylidene complexes are an important class of organometallic complexes [5] that has been known for a long time and is involved in organometallic hydrocarbon transformation [6,7], catalysis [8] and molecular electronic of carbon chains [9] including mixed-

* Corresponding author. *E-mail address:* d.astruc@ism.u-bordeaux1.fr (D. Astruc).

ABSTRACT

Visible-light photolysis of the cheap starting material [FeCp(η^6 -toluene)][PF₆] (Cp= η^5 -C₅H₅) using a simple 100-W globe in the presence of diphenyldiphosphinoethane (dppe) and terminal alkynes cleanly yields the vinylidene complexes [FeCp(dppe)(=C=CHR)][PF₆] and, upon further deprotonation, the iron-alkynyl complexes; the reaction is extended to ferrocenylacetylene to yield a bimetallic complex. © 2008 Elsevier B.V. All rights reserved.

and average–valence compounds [9,10]. Iron-vinylidene and alkenylidene complexes [Cp*Fe(dppe)(=C=CHR)][PF₆] (with Cp*= η^5 -C₅Me₅), synthesized and studied by the group of Lapinte, are a very interesting organometallic family that has been used as mimics of molecular wires [10]. The parent complexes [CpFe(dppe)(=C=CHR)][PF₆] are also known but require a long, multi-step synthesis [11].

2. Results and discussion

Our first synthetic attempt was carried out using trimethylsilylacetylene. The CH₂Cl₂ solution of [FeCp(η^6 -toluene)][PF₆], **1**, was irradiated with visible light overnight, and the solution changed from yellow to brown. After removal of CH₂Cl₂ and toluene *in vacuo*, [CpFe(dppe){=C=CH(SiMe₃)}][PF₆], **2**, was the only remaining reaction product. Its ³¹P NMR spectrum showed, besides the PF₆ peaks, only one peak at 97.0 ppm, confirming the consumption of dppe with a 1:1 stoichiometry. The brown iron-vinylidene complex **2** was deprotonated and deprotected to give the corresponding red iron-alkynyl complex **3** in THF using stoichiometric amounts of *t*-BuOK and *n*-Bu₄NF. The complex **3** was then separated from KPF₆ formed by extraction with ether or dichloromethane, and obtained in 99% yield (Scheme 1).

⁰⁰²²⁻³²⁸X/\$ - see front matter \odot 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2008.09.061

Scheme 1. Example of the visible-light generation of the 12-electron fragment $CpFe^*$ from $[FeCp(\eta^6-toluene)][PF_6]$ for the clean synthesis, in the presence of a terminal alkyne, of vinylidene and alkynyl complexes.

Similarly, the brown bimetallic vinylidene complexes **4** and **6** were synthesized starting from 1,4-bis(ethynyl)benzene and ethynylferrocene, respectively. These complexes were also similarly deprotonated to quantitatively yield the corresponding brown alkynyl complexes **5** and **7** (Schemes 2 and 3). The complex **7** was characterized by standard spectroscopic and analytical techniques including the expected IR and ³¹P NMR spectra (see Table 1 and end of this article) and mass spectrometry showing its molecular peaks at 1162.23 (Calc. for $C_{72}H_{62}P_4Fe_2$: 1162.86).

The vinylidene and alkynyl complexes were also characterized by cyclic voltammetry in dichloromethane [10,12]. The monoalkynyl complex **3** shows a reversible redox wave at 160 mV vs. FeCp₂* that corresponds to the oxidation of Fe^{II} to Fe^{III} of the iron-alkynyl complex. The symmetrical bisalkynyl complex **5** presents two reversible redox waves at 0 and 210 mV vs. FeCp₂*, the difference of 210 mV between these two waves indicating a high electronic communication between the two metal centers that sharply contrasts with the lack of wave splitting observed in 1,4-bis(ferrocenylethynyl)benzene [12].

The alkynyl complex CpFe(dppe)C=C-Fc, **7**, shows two completely reversible redox waves at 0 mV and 650 mV vs. FeCp₂^{*}. The first redox wave at 0 mV corresponds to the oxidation of the iron-alkynyl complex to the mixed-valence [13] complex **7**⁺ that has been reported by Sato [14], and the second wave corresponds to the oxidation of Fe^{II} to Fe^{III} of the ferrocenyl group.

In conclusion, a new, general route to iron-vinylidene and ironalkynyl complexes has been disclosed and shown to be general and quantitative in a single-step by visible-light photolysis in dichloromethane of the cheap, easily available starting material [FeCp(η^6 toluene)][PF₆] in the presence of terminal alkynes.

3. Spectroscopic and analytical data

3.1. CpFe(dppe)C≡CH, 3

¹H NMR (CDCl₃, 300 MHz): 7.90–7.14 (m, 20H, arom. *CH* of dppe), 4.21 (s, 5H, Cp), 2.72 and 2.26 (m, 4H, *CH*₂*CH*₂ of dppe), 1.86 (s, 1H, C=*CH*). ¹³C NMR (CDCl₃, 75.0 MHz): 142.4–127.1 (arom. of dppe), 112.1(C_{β}), 105.7 (C_{α}), 79.6 (Cp), 28.3 (*CH*₂ of dppe). ³¹P NMR (CDCl₃, 121 MHz): 106.4 (Fe-dppe). MS (ESI *m/z*), Calc. for C₃₃H₃₀P₂Fe: 544.4. Found: M⁺ 545.0. Anal. Calc. for C₃₃H₃₀P₂Fe: C, 72.81; H, 5.55. Found: C, 72.47; H, 5.41%. Infrared $v_{C=C}$: 1918 cm⁻¹.

3.2. 1,4-(CpFe(dppe)C≡C)₂C₆H₄, 5

¹H NMR (CDCl₃, 300 MHz): 7.89–7.20 (m, 20H, arom. *CH* of dppe), 6.11 (s, 4H, *CH* of benzene bridge), 4.19 (s, 10H, Cp), 2.56 and 2.16 (m, 4H, *CH*₂*CH*₂ of dppe). ¹³C NMR (CDCl₃, 75.0 MHz): 142.4–120.1 (arom.), 111.6 (C_β), 103.7 (C_α), 76.6 (Cp), 28.1 (CH₂ of dppe). ³¹P NMR (CDCl₃, 121 MHz): 106.6 (Fe-dppe).

Scheme 2. Visible-light photolytic synthesis of binuclear vinylidene and alkynyl complexes from the precursor complex [FeCp(η^6 -toluene)][PF₆].

Scheme 3. Visible-light photolytic synthesis of ferrocenylvinylidene and alkynyl complexes from the precursor complex [FeCp(η⁶-toluene)][PF₆].

Table 1 Electrochemical, I.R. and P NMR data of the complexes 2–7.

Complex		Cyclic voltammetry ^a		I.R.		³¹ P NMR	
		1st <i>E</i> _{1/2} (mV)	2nd $E_{1/2}$ (mV)	υ _{CC}	$v_{\rm PF6}$	$\delta_{\rm ppm}$ (dppe)	$\delta_{\rm ppm}~({\rm PF_6})$
Vinilidene complexes	2	825	1025	1642	839	97.0	-144.1
	4	800	1020	1632	839	92.4	-144.1
	6	510	690	1967	839	93.5	-144.1
Alkynyl complexes	3	160	-	1918	-	106.4	-
	5	0	210	2060	-	106.6	-
	7	0	650	2066	-	106.4	-

^a $E_{1/2} = (E_{pa} + E_{pc})/2$ vs. FeCp₂^{*} (in V). Electrolyte: [*n*-Bu₄N][PF₆] 0.1 M; working and counter electrodes: Pt; reference electrode: Ag; internal reference: FeCp₂^{*}; scan rate: 0.200 Vs⁻¹; 20 °C.

(MALDI-TOF; m/z). Calc. for $C_{72}H_{62}P_4Fe_2$: 1162.85. Found: M⁺ 1162.23. Anal. Calc. for $C_{72}H_{62}P_4Fe_2$: C, 74.37; H, 5.37. Found: C, 73.93; H, 5.32%. Infrared $v_{C=C}$: 2060 cm⁻¹.

3.3. CpFe(dppe)C=C-Fc, 7 (Fc = ferrocenyl)

¹H NMR (CDCl₃, 300 MHz): 7.74–7.20 (m, 20H, arom. *CH* of dppe), 4.21 (s, 5H, Cp), 3.77–3.65 (m, 9H, Cp of Fc), 2.75 and 2.38 (m, 4H, CH_2CH_2 of dppe). ¹³C NMR (CDCl₃, 75.0 MHz): 142.4–127.4 (arom.), 79.0 (Cp), 73.4–65.8 (Cp of Fc), 25.6 (*C*H₂ of dppe). ³¹P NMR (CDCl₃, 121 MHz): 106.4 (Fe-dppe). Anal. Calc. for C₄₃H₃₈P₂Fe₂: C, 70.90; H, 5.26. Found: C, 70.56; H, 5.21%. Infrared $v_{C=C}$: 2066 cm⁻¹.

Acknowledgments

We are grateful to Fundação para a Ciência e a Tecnologia (FCT), Portugal (Ph.D. grant to CO), the Institut Universitaire de France (IUF, DA), the CNRS and the Université Bordeaux I for financial support.

References

- (a) E.A. Koerner von Gustorf, F.-W. Grevels, I. Fischler (Eds.), The Organic Chemistry of Iron, vols. I and II, Academic Press, New York, 1978;
 (b) P. Astron. Operator Mills. Chemistry and Catalogic Society. Deliver.
 - (b) D. Astruc, Organometallic Chemistry and Catalysis, Springer, Berlin, 2007 (Chapter 11).

- [2] (a) M.L.H. Green, L. Pratt, G. Wilkinson, J. Chem. Soc. (1960) 989–992;
 (b) A.N. Nesmeyanov, N.A. Vol'kenau, I.N. Bolesova, Tetrahedron Lett. (1963) 1725–1728;
 - (c) I.U. Khand, P.L. Pauson, W.E. Watt, J. Chem. Soc. (1968) 2257-2260;
 - (d) For the various reports on the synthesis of $[FeCp(\eta^6-toluene)][PF_6]$ based on the reaction between ferrocene and AlCl₃ in the presence of Al powder in refluxing toluene, see Ref. [3b, p. 4040].
- [3] (a) A.S. Abd-El-Aziz, S. Bernardin, Coord. Chem. Rev. 203 (2000) 219–267;
 (b) D. Astruc, Tetrahedron 39 (1983) 4027–4095. Tetrahedron Report N° 157.
- [4] D. Catheline, D. Astruc, J. Organomet. Chem. 248 (1983) C9–C12;
 T.P. Gill, K.R. Mann, Inorg. Chem. 22 (1983) 1986–1991;
 - D. Catheline, D. Astruc, Organometallics 3 (1984) 1094–1100;
 - J. Ruiz, D. Astruc, Inorg. Chim. Acta 361 (2008) 1–4;
 - C. Ornelas, J. Ruiz, J. Rodrigues, D. Astruc, Inorg. Chem. 47 (2008) 4421-4428.
- [5] M.I. Bruce, Chem. Rev. 91 (1991) 197–257.
- [6] J.P. Selegue, Organometallics 1 (1982) 217–218;
 H. Werner, Chem. Commun. (1997) 903–904;
- S. Rigaut, D. Touchard, P.H. Dixneuf, Coord. Chem. Rev. 248 (2004) 1585–1601.
 [7] For mechanistic aspects regarding the transformation of terminal alkynes to vinylidene complexes, see: Y. Wakatsuki, J. Organomet. Chem. 689 (2004) 492–501.
- [8] S.T. Nguyen, L.K. Johnson, R.H. Grubbs, J.W. Ziller, J. Am. Chem. Soc. 114 (1992) 3974–3975.
- [9] F. Paul, C. Lapinte, Coord. Chem. Rev. 178 (1998) 431-509;
- S. Szafert, J.A. Gladysz, Chem. Rev. 103 (2003) 4175-4205.
- [10] N. Le Narvor, C. Lapinte, Chem. Commun. (1993) 357-359;
 - N. Le Narvor, C. Lapinte, Organometallics 14 (1995) 634–639;
 N. Le Narvor, L. Toupet, C. Lapinte, J. Am. Chem. Soc. 117 (1995) 7129–7138;
 T. Weyland, C. Lapinte, G. Frapper, M.J. Calhorda, J.-F. Halet, L. Toupet,
- Organometallics 16 (1997) 2024–2031. [11] S. Abbot, S.G. Davies, P. Warner, J. Organomet. Chem. 246 (1983) C65–C67; G. Consiglio, F. Bangerter, C. Darpin, F. Morandini, V. Lucchini, Organometallics
 - 3 (1984) 1446–1449; S. Nakanishi, K. -I Goda, S.-i. Uchiyama, Y. Otsuji, Bull. Chem. Soc. Jpn. 65 (1992) 2560–2562.

- [12] P. Jutzi, B. Kleinebekel, J. Organomet. Chem. 545-546 (1997) 573-
- [12] P. JULZI, B. KICHERGERER, J. ---, 576;
 H. Fink, N.J. Long, A.J. Martin, G. Opromolla, A.J.P. White, D.J. Williams, P. Zanello, Organometallics 16 (1997) 2646–2650.
 [13] M.-H. Desbois, D. Astruc, J. Guillin, F. Varret, A.X. Trautwein, G. Villeneuve, J. Am. Chem. Soc. 111 (1989) 5800–5809;

M. Lacoste, H. Rabaa, D. Astruc, A. Le Beuze, J.-Y. Saillard, G. Précigoux, C. Courseille, N. Ardoin, W. Bowyer, Organometallics 8 (1989) 2233–2242. [14] M. Sato, Y. Hayashi, M. Katada, S. Kawata, J. Organomet. Chem. 471 (1994)

- 179-185;
 - M. Sato, Y. Hayashi, S. Kumakura, N. Shimizu, M. Katada, S. Kawata, Organometallics 15 (1996) 721–729.